PV function

PV ফাংশন হলো এক্সেলের একটি Financial function যা ঋণ বা বিনিয়োগের বর্তমান মূল্য নির্ধারণ করে। এটি একটি Fixed মুনাফার হারের উপর ভিত্তি করে কাজ করে। PV ফাংশন আপনি নিয়মিত, Fixed Installments এ (যেমন একটি গৃহস্থালি ঋণ বা অন্য কোন ঋণ) অথবা Future Value (আপনার বিনিয়োগের লক্ষ্য) ব্যবহার করতে পারেন।

PV ফাংশন কিভাবে কাজ করে?

PV ফাংশন নিম্নলিখিত সূত্র ব্যবহার করে কাজ করে:

PV = FV / (1 + r)^n

যেখানে:

  • PV হল বর্তমান মূল্য
  • FV হল ভবিষ্যতের মূল্য
  • r হল সুদের হার (দশমিক)
  • n হল সময়ের সময়কাল (পিরিয়ড)

PV ফাংশন ব্যবহারের নিয়ম

PV ফাংশন ব্যবহার করার জন্য, আপনাকে নিম্নলিখিত আর্গুমেন্টগুলি সরবরাহ করতে হবে:

  • rate: সুদের হার (দশমিক)
  • nper: সময়ের সময়কাল (পিরিয়ড)
  • pmt: প্রতি পিরিয়ডে প্রদত্ত কিস্তির পরিমাণ
  • fv: ভবিষ্যতের মূল্য (ঐচ্ছিক)
  • type: পেমেন্টের ধরণ (0 বা 1)

দ্রষ্টব্য:

  • যদি আপনি fv আর্গুমেন্ট ব্যবহার না করেন, তাহলে আপনাকে pmt আর্গুমেন্ট ব্যবহার করতে হবে।
  • type আর্গুমেন্ট ঐচ্ছিক। যদি এটি বাদ দেওয়া হয়, তাহলে এটি 0 ধরে নেওয়া হয়।

PV ফাংশন ব্যবহারের উদাহরণ

গল্প:

আপনি একটি বীমা সংস্থার কাছ থেকে একটি বীমা অ্যানুইটি কিনেছেন। প্রতি মাসের শেষে আপনি $500.000 পাবেন। বীমা সংস্থা 8% সুদের হার দেয়। অ্যানুইটিটি 20 বছর ধরে চলবে। আপনি জানতে চান যে আজকের ডলারে এই অ্যানুইটির মূল্য কত।

সমাধান:

আপনি নিম্নলিখিত সূত্রটি ব্যবহার করতে পারেন:

=PV(A3/12, 12*A4, A2, , 0)

যেখানে:

  • A2 = $500.000 (প্রতি মাসে প্রদত্ত কিস্তির পরিমাণ)
  • A3 = 8% (সুদের হার)
  • A4 = 20 (সময়ের সময়কাল)

এই সূত্রটি নিম্নলিখিত ফলাফল দেবে:

$59,777.15

এর মানে হল যে আজকের ডলারে এই অ্যানুইটির মূল্য $59,777.15।

Use the Excel Formula Coach to find the present value (loan amount) you can afford, based on a set monthly payment. At the same time, you’ll learn how to use the PV function in a formula.

Or, use the Excel Formula Coach to find the present value of your financial investment goal.

Syntax

PV(rate, nper, pmt, [fv], [type])

The PV function syntax has the following arguments:

  • Rate    Required. The interest rate per period. For example, if you obtain an automobile loan at a 10 percent annual interest rate and make monthly payments, your interest rate per month is 10%/12, or 0.83%. You would enter 10%/12, or 0.83%, or 0.0083, into the formula as the rate.
  • Nper    Required. The total number of payment periods in an annuity. For example, if you get a four-year car loan and make monthly payments, your loan has 4*12 (or 48) periods. You would enter 48 into the formula for nper.
  • Pmt    Required. The payment made each period and cannot change over the life of the annuity. Typically, pmt includes principal and interest but no other fees or taxes. For example, the monthly payments on a $10,000, four-year car loan at 12 percent are $263.33. You would enter -263.33 into the formula as the pmt. If pmt is omitted, you must include the fv argument.
  • Fv    Optional. The future value, or a cash balance you want to attain after the last payment is made. If fv is omitted, it is assumed to be 0 (the future value of a loan, for example, is 0). For example, if you want to save $50,000 to pay for a special project in 18 years, then $50,000 is the future value. You could then make a conservative guess at an interest rate and determine how much you must save each month. If fv is omitted, you must include the pmt argument.
  • Type    Optional. The number 0 or 1 and indicates when payments are due.
Set type equal toIf payments are due
0 or omittedAt the end of the period
1At the beginning of the period

Remarks

  • Make sure that you are consistent about the units you use for specifying rate and nper. If you make monthly payments on a four-year loan at 12 percent annual interest, use 12%/12 for rate and 4*12 for nper. If you make annual payments on the same loan, use 12% for rate and 4 for nper.
  • The following functions apply to annuities:
CUMIPMTPPMT
CUMPRINCPV
FVRATE
FVSCHEDULEXIRR
IPMTXNPV
PMT

  • An annuity is a series of constant cash payments made over a continuous period. For example, a car loan or a mortgage is an annuity. For more information, see the description for each annuity function.
  • In annuity functions, cash you pay out, such as a deposit to savings, is represented by a negative number; cash you receive, such as a dividend check, is represented by a positive number. For example, a $1,000 deposit to the bank would be represented by the argument -1000 if you are the depositor and by the argument 1000 if you are the bank.
  • Microsoft Excel solves for one financial argument in terms of the others. If rate is not 0, then:If rate is 0, then:

(pmt * nper) + pv + fv = 0

Example

Copy the example data in the following table, and paste it in cell A1 of a new Excel worksheet. For formulas to show results, select them, press F2, and then press Enter. If you need to, you can adjust the column widths to see all the data.

DataDescription
$500.000Money paid out of an insurance annuity at the end of every month.
8%Interest rate earned on the money paid out.
20Years the money will be paid out.
FormulaDescriptionResult
=PV(A3/12, 12*A4, A2, , 0)Present value of an annuity with the terms in A2:A4.($59,777.15)

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *